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ABSTRACT

We use computer simulations of tidal interactions of
spiral galaxies to attempt to understand recent discoveries
about infrared(IR) emitting galaxies by Telesco (MSFC),
Wolstencroft and Done(Royal Observatory, Edinburgh). We
find that the stronger the tidal perturbation by a companion
the more disk gas clouds are thrown into nucleus crossing
orbits and the greater the velocity Jjumps crossing spiral
arms. Both these tidally created characteristics would
create more IR emission by high speed cloud collisions and
more IR via effects of recently formed stars. This
expectation at greater tidal perturbation matches the
observation by Telesco et al. of greater IR emission for
spiral galaxies with closer and/or more massive companions.
The greater collision velocities found at stronger
perturbations in our models will also result in higher dust
temperature in the colliding clouds as Telesco et al. also
observe. In the IR pairs that Telesco et al. examine, most
have only one member, the larger, detected and when both are
detected, the larger is always the more luminous. In our
simulations and in a simple analytic description of the
strong distance depencence of the tidal force, we find that
the big galaxy of a pair is more strongly affected than the
small in comformity with the results of Telesco et al.
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1. INTRODUCTION

In order to understand the problem, method, and
conclusions of this project it 1s necessary to recall some
background information about spiral galaxies. Spiral
galaxies consist of three main parts: the nuclear bulge,
the galactic disk and the halo.

The galactic disk conslsts of stars, hydrogen gas, and

. dust with the first most important in terms of mass etc.

The galactic disk 1s about 100,000 light years or 30,000
parsecs (30 kpc) across. The material in the galactic disk
travels in near circular orbits around its center at 200-250
km/s. The surface density of stars and to a greater degree
gas and dust are enhanced in the splral arms. These arms
(usually two) spiral outward from the nucleus in the disk.

The nuclear bulge consists of a concentrated swarm of
stars in much more random orbits than the disk material. 1In
the very center of the nuclear bulge is a 1/2 to 1 kpc
nuclear disk composed of denser gas in circular orbits
around what may be a massive black hole.

The halo is a mysterious component which is as large or
larger than the glactic disk. The halo is roughly spherical
and contains globular clusters of stars, solitary stars and
mysterious undetected dark matter in random tilted orbits.
The halo is thought to be roughly equal in mass to the

galactic disk although there is considerable disagreement
about this.

Most of the mass of the gas in the galactic disk

interior to the sun's orbital radius is in molecular
9
hydrogen clouds{(~5 x10 solar masses). Beyond the sun's
orbital radius the hydrogen is primarily atomic but still in
clouds. The molecular cloud surface density peaks at 6 Kpc
from the center with a minimum near the nucleus then another
maximum at the center in the nuclear disk (see review by
Mihalis and Binney 1981). The gaseous disk is very thin,
about 120 pc. Most of the clouds are scattered evenly over
5

the disk in angle. These typical clouds are around 10
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solar masses and about 20 pc in size. They are very cold,
about 2 degrees Kelvin, probably because massive blue stars
are not forming in them (Elmegreen 1986). The velocity
dispersion among the clouds is a few km/s, much smaller than
the disk stellar velocity dispersion.

In contrast, another population of clouds, those with
warm cores (about 11 degrees Kelvin) are concentrated in the
spiral arms. These clouds are greatly outnumbered by the
cold clouds. Formation of groups of O/B stars evidently
warms these clouds. These clouds are mostly aggregated in
complexes of about a million solar masses (Soloman and
Sanders 1986). The formation of these complexes is
apparently the result of inelastic encounters among the
clouds when they are crowded together in the stellar spiral
arms of the disk (Kwan and Valdes 1983, Tomiska 1984). It
may be that star formation and gravitational tides upon
leaving the spiral arms break up these complexes. They are
not found outside the arms and the stellar associations in
them are only 10 to 20 million years old, the time to cross
an arm.

2. OBJECTIVES

This project will involve infrared(IR) emission by
spiral galaxies. This is primarily from heated dust within
the gas clouds. the dust can be heated by visual radiation
from luminous newly formed stars. The thick dust clouds
around such atars deo not let the visible ocut well in
contrast to the IR which passes out easily. Another
mechanism to generate IR which is more direct is the
collision of clouds. 1If their relative velocity is great
enough (greater than 50 km/s), dissociation and ionization of
the hydrogen will occur at the collision interface. The
resulting visual radiation from the hydrogen will be
absorbed and then re-emitted by the dust as IR radiation
(Harwit et al. 1987).

My project this summer is related to recent work by C.
Telesco (MSFC),R.D.Wolstencroft and C.Done (Royal
Observatory, Edinburgh). Telesco et al. (1987) used IRAS
data and a sample of interacting pairs of galaxies compiled
by Arp and Madore (1987). Telesco et al. studied the
emission at 60 and 100 micrometers, defining the parameter R
to be the ratio of the 60 to the 100 micrometer fluxes. If
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R is larder than 0.5 the galaxy is defined to be "hot",
smaller "cool” An R of 0.5 is roughly 60 degrees Kelvin

which is hot compared to the 5 degrees typical of molecular
clouds in our galaxy.

Telesco et al. measured the angular sizes of pair
members and thelr separations of European Southern
Observatory Sky Survey photographs. They could estimate
masses of the pair members from the empirical relationship

1.5
that mass is proportional to size . They then could
estimate a tidal perturbation perameter equal to the
perturber mass (in terms of the galaxy mass) divided by the

distance of of the perturber cubed (in terms of the galaxy
radius).

Telesco et al. found: (a) a correlation between
temperature R and the degree of tidal perturbation in IR
emitting pairs. Also stronger tidal perturbation goes with
greater IR energy output, (b) a rule that when only one
member of a pair was detectable it was the larger member. If
both were detectable, the larger was more luminous.

During this summer, I used computer simulations to try
to better understand the reasons for (a) and (b) above. 1
was also interested in the mechanism and location of the IR

emission i.e. is it via collisions of clouds and/or via star
formation?

3. THE COMPUTER PROGRAM

Our principal tool is a two-dimensional polar coordinate
FFT n-body program by Miller (1976, 1978). the coordinate
grid of this program is well suited for study of disk
galaxies providing high spatial resolution where it is most
needed, near the center (see Figure 1). We use about 60,000
particles to simulate the disk of the spiral galaxy. Each
part of the disk acts gravitationally on all other parts of
the disk, i.e. the disk is self-gravitating.

Major parameters of our study were the ratio of the halo
mass to the disk mass and the velocity dispersion in the
galaxy's disk. We expect the halo to have a high velocity
dispersion and, therefore, to be much more stable than the
"cooler" disk. Accordingly, we followed Miller (1978)
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and considered the halo to be inert. 1Increasing the halo to
disk mass helps stabilize the disk, as does increasing the
disk velocity dispersion (Toomre 1964). The spatial
softening due the program grid and a constant in the
gravitational potential formula assumed have the same
stabilizing effect as the velocity dispersion (Miller
1971,1974,1978). Using Miller (1978), the spatial softening
of our model disk is equivalent to a velocity dispersion of
about 1.5 times that sufficient to stabilize it against
small axisymmetric perturbations. This assumed dispersion
is about that seen in stellar disks of spiral galaxies. We
thus used only this softening to simulate the stellar disk
velocity dispersion. The-halo-to-disk mass ratio is taken
to be one.

4. PREVIOUS USE OF THE PROGRAM

This program has been used to study the onset of global
instability and subsequent changes in a disk composed
primarily of stars (Miller 1978). The unmodified program
has also been used to study the onset of global
instabilities in a gaseous disk (Cassen, Smith, Miller
1981). We have modified the program to simulate a finite
rather than the infinite disk studied by Miller and co-
workers. We also modified the program to simulate the tidal
effect of a companion on the disk of a spiral galaxy. We
also used this version to study the capture and orbital
decay of satellitesof disk galaxies (Byrd, Saarinen,
Valtonen 1986) and the creation of spiral arm spurs by
large gas complexes in galaxy disks (Byrd,Smith, Miller
1984).

The most recent use of this program and most relevant
use to the present project is simulate the tidal triggering
of Seyfert galaxy activity by companions (Byrd, Sundelius
and Valtonen 1986; Byrd,Valtonen, Sundelius, and Valtaoja
1987). 1In this investigation, the companions may trigger
inflows of disk material into the nucleus to fuel activity
there. We have used the program to simulate the tidal action
of the companion on the disk of a spiral galaxy and show
that the tidal strengths at which large inflows appear match
those of the observed companions of Seyferts.



Our fundamental method for estimating gas cloud flow
into the'nuclear regions was very crude. We simply counted
how many of the 60,000 particles/step were thrown into
orbits crossing the 1 kpc nuclear region. This fraction
times the assumed fraction of the disk in gas (0.10) times

11
the assumed disk mass (1 x 10 solar masses, 20 kpc) equals
the rate gas entered the nuclear regions. From
observations, the rate was required to be greater than or
equal to 0.5 solar masses/yr. This gas, once thrown into
such orbits, will collide with other gas clouds or the
nuclear disk to flow into the "engine". Small scale
accretlon processes near the central black hole were beyond
the scope of our investigation.

According to our simple previous calculations,smaller
tidal perturbations result in weaker inflows in our model.
Tidal perturbatlion levels (as previously defined) of 0.01 to
0.1(depending on the mass of the halo)are necessary to
produce the required inflows. Dahari (1984) finds
observationally that most spiral galaxies perturbed at these
levels or greater are Seyferts.

5. AN EXAMPLE OF A PROGRAM RUN AND OUTPUT

In the example shown in Figure 2, we see the shapes
generated during an encounter of a galaxy with a perturber
0.22 of the galaxy's mass which approaches in a zero energy
orbit to within two disk radii of the galaxy. The halo to
disk mass ratio is assumed to be one. The disk has 60,000
particles.

The time covered is about three revolutions of the disk
edge. Circular orbit velocity in the disk is 208 km/s. The
darkness in the figure indicates particle surface density.
The unit of length in the program 1is equal to about one

11
kpc. The total mass of the galaxy is 2 x 10 solar
masses. The disk of the galaxy is 20 units in radius, about
1/3 of the grid radius. The perturber enters the grid on
the right at 0 degrees and swings by in a counter clockwise
sense, the same as the disk rotation and the measurement of
the angular position of the perturber.

Figure 3 shows a display of the number of particles in
each of the bins in our example run. The underlines show
the density peaks along a spiral arm created by the tidal
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action. The horizontal bin rows are by azimuth every 10
degrees starting zero at the top. The 24 columns are
radial with the edge of the grid at the right.

Figqure 4 shows the average radial velocities of the
particles in the bins (zero for bins with no particles or
with zero rv). For an undisturbed disk, all values should
be zero since the particles are initially in circular
orbits. However, there are inward (-) and outward (+)
velocities as a result of the tidal perturbation. Divide
the values by three to get velocities in km/s. We see the
velocity differences in Figure 4 are not large compared to
the origlnal clrcular orbital veloclty of 208 km/s.

6. EXPLAINING RESULTS FOUND BY TELESCO ET AL.

We will use these displays of the results of the above
and other computer runs to explain the reasons found by
Telesco et al. in thelr observations. First, let us
consider the first two correlations for IR emitting pairs of
interacting galaxies. As we noted in our earller work on
Seyfert galaxlies, stronger tidal perturbation results in
greater inflow lnto the nuclear regions. Considering our
previous "example" run, we f£ind that it causes no inflow to
the 1 kpc nuclear regions. Note how the radial velocities
in the bins near the center are zero in Figure 4.

Now consider a stronger run with the mass increased
to 0.44 the galaxy's mass and the close approach distance 0.75
of its value in the other run. This reduction results in an
increase in tidal perturbation to 5x ‘' the previous value.
Figure 5 shows the shape of the disturbed galaxy 900 time
steps (900 million years) after the perturber entered the
grid. Counts within the program show that at least 1/3 of
the disk particles are thrown into orbits crossing the inner
1 kpc, much more than in the weaker perturber run.

Figure 6 shows the radial velocities in the different
bins for this stronger run. Surprisingly,the radial
velocities inward near the nucleus are only around 20 km/s.
The high surface densities near the center help result in
the large total inflow. However, the IR emission from the
nucleus (due to the inflow) would probably be created
later in the nuclear disk (via star formation etc.), rather
than from the velocity of collision with the disk.
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However, the stronger run shows interesting events in
the disk. The radial velocity deviations are about five
times those in the weaker run. Inward and outward flows of
about 100 km/s are seen. 1In particular, large inward and
outward velocities are found in outer and inner bins
respectively at the same azimuth. It seems that in the
outer disk collisions at speeds sufficient to excite IR
directly will occur. Of course, after these collisions one
would expect massive stars to quickly form and produce
indirect IR emission. So IR emission should be seen from
the disk of the galaxy as well as the nuclear regions.

The correlation between temperature and tidal
perturbation is explained also. ' Greater velocity
differences resulting from stronger perturbation encounters
result in more energy release in collisions, greater grain
temperatures and hotter IR temperature emission.

The final pattern that Telesco et al. found was that
most interacting pairs detectable in IR had only one
detectable member. When both were detected, the larger was
always more IR luminous.

The strong variation of tidal force with distance
(inverse cubed) is probably the major factor in the large
versus small pattern. Consider the following example of a
massive primary and a companion galaxy one-half the mass of
the primary. They are two disk radii of the primary
apart. The nearer edge of the primary to the secondary has
a tidal perturbation on it eight times that on the primary's

center. The far edge has a tidal perturbation only one-
third that at the center.

1.5

The secondary galaxy is smaller by a factor >f 0.5 .
The perturbation at the center of the secondary is the same
as at the center of the primary. The nearer edge of the
secondary is perturbed by a factor of only 1.8 times that at
the secondary's center while the far edge factor is
0.6. The difference between the two edges is not so great
as for the primary and the near edge is not perturbed nearly
So strongly as the near edge of the Primary. We thus see
that the size of the galaxy relative to the distance of its
perturber is very important.



The two computer runs discussed earlier show this
effect of size relative to separation. Recall that the
encounter distance was decreased by 25% in the second run.
The closer encounter result is much more asymmetric with the
nearer arm much stronger. The surface density asymmetry
between the two main arms in the close encounter is 2/1 in
the close encounter but it is only 1.1/1 for the far
encounter. The strength of the stronger arm and the arm-
interarm contrast is greater for the closer encounter.

We have also done a run of a disk perturbed by a
symmetric tidal field to the same level at the center as our
close encounter above. Interestingly, the nuclear inflow is
much smaller for the symmetric, distant perturber run.
Possiby the strong asymmetric arm structure helps promote
nuclear inflow after it forms.

The above explains results found by Telesco et al. for
small versus large members of a pair. The fact that the
more massive galaxy is larger relative to the pair
separation than the less massive could be the cause of the
emission difference.

7. SUMMARY AND LIMITS OF CONCLUSIONS

We see that the IR emission could come from the disk as
well as the nucleus according to our simulations.
Increasing the strength of the perturbation should increase
the emission and make it occur at a higher temperature. The
larger size of the more massive pair member relative to the
pair separation causes its emission to be stronger. Also
the disk emission should be more asymmetric in the more
massive member for the same reason. These patterns match
those observed by Telesco et al.

The above conclusions apply to tidally interacting but
not colliding spirals or merging galaxies. The conclusions
also do not apply to the case where one galaxy tears
significant amounts of material from the other. This could
be one way for the small galaxy to be more luminous in some
cases. Unfortunately, the IRAS data is not good enough to
show the morphology of IR emission within the pair members.
While some nearby systems show the expected asymmetries, a
large enough sample observed sufficiently well will be an
important project for the future.
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Figure S5-Disturbed disk ln closer encounter run than Fig. 2
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